
Programming the 8-pin
 Microchip PIC in Basic

Volume 1

Using the PICBASIC PRO Compiler and PIC12F683

Table of Contents
CHAPTER 1 – MICROCONTROLLER FUNDAMENTALS 7

IN-CIRCUIT SERIAL PROGRAMMING ... 12
ICSP HARDWARE INTERFACE .. 13
ICSP PIN-OUT .. 16
INSTALLING THE SOFTWARE ... 17
INSTALLING MICROCODE STUDIO AND PICBASIC PRO 18
PICKIT2 SETUP ... 19

CHAPTER 2 – FLASH AN LED ... 28

HARDWARE ... 29
SOFTWARE .. 30
NEXT STEPS .. 32
QUESTIONS ... 34

CHAPTER 3 – LED TRAFFIC LIGHT ... 35

HARDWARE ... 35
SOFTWARE .. 36
NEXT STEPS .. 39
QUESTIONS ... 40

CHAPTER 4 – SENSING A SWITCH .. 41

HARDWARE ... 42
SOFTWARE .. 43
NEXT STEPS .. 45
QUESTIONS ... 46

CHAPTER 5 - READ A POTENTIOMETER ... 47

HARDWARE ... 48
NEXT STEPS .. 53
QUESTIONS ... 54

CHAPTER 6 - SENSING LIGHT .. 55

HARDWARE ... 56
NEXT STEPS .. 60
QUESTIONS ... 61

CHAPTER 7 – CREATING SOUND .. 63

HARDWARE ... 64
SOFTWARE .. 65

NEXT STEPS .. 67
QUESTIONS ... 68

CHAPTER 8 – SENSING VIBRATION ... 69

HARDWARE ... 70
SOFTWARE .. 71
NEXT STEPS .. 76
QUESTIONS ... 77

CONCLUSION .. 78

APPENDIX A – PROJECTS PARTS LIST .. 80

APPENDIX B – ANSWERS TO QUESTIONS .. 82

Introduction
I've been programming Microchip PIC microcontrollers for years.
When I started programming the most common software option
was assembly language programming which can be very confusing
to the beginner. Then one day I discovered a product that
advertised programming Microchip PIC® microcontrollers in
BASIC. It was the PICBASIC compiler from microEngineering
Labs. They eventually released a more powerful version called
PICBASIC PRO and I have been using that compiler ever since.
Along the way they developed a sample version of the PICBASIC
PRO compiler that is limited to a few parts and only 31 commands
but it was more than enough for someone to try out this great
method of programming for free.

This book is a beginner’s guide to using the PICBASIC PRO and
uses the sample version for all the projects. I will use a low cost
programming kit from Microchip as the hardware so the reader can
learn right along with me for little investment. This language is so
powerful, the 31 commands don’t seem like a limitation until you
get comfortable with this method of programming and want to do
more complex projects. This book is not intended to be a complete
source of knowledge on programming with PICBASIC PRO but
by the end of the chapters and projects you should be able to
branch out and develop your own more complex projects.

It may lead to a profession in programming and that may force you
to learn other languages such as the C Language I use in my book
“Beginner’s Guide to Embedded C Programming”. Programming
in PICBASIC PRO is very powerful though and can handle just
about any task you need. Programming in PICBASIC PRO is also
so easy, users from all skill levels can make it work well. After all
BASIC stands for Beginner All-purpose Symbolic Instruction
Code and the key word is Beginner. BASIC is also great way to
introduce microcontroller programming to many skill levels. You
cannot read an electronics hobbyist magazine without seeing a
project that is microcontroller based. The evolution of the

homemade robot has advanced due to the advancements and
affordability of microcontrollers. But for some it's still difficult to
get started or to find all the right pieces you need to build your own
microcontroller development lab. This book is intended to help you
get started.

If you have any questions regarding this book or the projects in this
book, you can usually get me via email at chuck@elproducts.com.
My website at www.elproducts.com shows all the books I’ve
written to help readers get started programming. Now lets get
started learning how to program Microchip PICs in BASIC.

Chapter 1 – Microcontroller Fundamentals

Many of the programming books I’ve read tend to skip over a
couple of important topics; how a microcontroller works and how
to use them. Many of the books go into great detail on the software
or the project operation but assume you know all the steps to get
that program into the microcontroller or exactly what a
microcontroller is. I don’t assume the reader knows any of this so
in this first chapter I cover the fundamentals of Microcontrollers.

What is a Microcontroller?
Everybody reading this has probably used a Personal Computer
(PC) run by a microprocessor which is often times an Intel
microprocessor from the Intel Corporation. The PC’s central
microprocessor has several support items that allow it to function:
1) The memory; where programs are stored, known as a hard drive
or ROM, 2) The RAM, or temporary memory used by the
programs running in the microprocessor and 3) The interface to the
outside world, also known as the BIOS or input and output (I/O)
control. The PC’s system mother board will connect these three
components and also have a power supply and a system clock
typically running at gigahertz speed and advertised as such to
imply how fast the PC is (i.e. 1 Ghz processor).

The PC sends information through the I/O to be displayed on the
monitor or printed paper via a connected printer. The I/O also reads
the keyboard and mouse position. Basically everything the PC does
with a useful purpose to human's runs through the I/O. All these
components I’ve described make up the central processing unit or
CPU of your home computer and is typically packaged in a large
metal box most people just call “the computer”. Now lets assume
you could shrink all those components; microprocessor, ROM,
RAM and I/O, system clock into a single integrated circuit. It can
be done and has been done. It’s called a microcontroller and runs

many of the products you already are familiar with such as mp3
players, cell phones or video game players.

A microcontroller is a miniature computer in a single integrated
circuit with a small amount of ROM and RAM and lots of I/O.
Figure 1-1 shows some of the various sized microcontrollers from
Microchip Technology Inc. They offer a full line of
microcontrollers that they call the PIC® microcontrollers. They
offer many more than shown here but for these are very common
packages that range from an 8 pin small package up to a 40 pin
large package with lots of I/O.

Figure 1-1: Microchip PIC Microcontrollers

How Does a Microcontroller Work?
A microcontroller requires a series of coded electrical charges
stored into its ROM to control the micro's I/O. These electrical
charges take on two states; high voltage or low voltage. You can
think of these charges just like a light switch where it’s either on or
off. These charges can also be represented mathematically by the
binary number system which only includes the digits 1 and 0. The
microcontroller is designed to do different operations on the I/O
depending on the arrangement of these charges. An eight bit
microcontroller uses 8 different charges combined to determine the
operation to perform. This is also known as a byte value. Figure 1-
2 shows an 8-bit byte value. There are 256 different arrangements
of bits in an 8-bit value. Each one can represent a different
operation in the microcontroller.

1 0 0 1 0 0 1 0

Figure 1-2: 8-bit byte value

When you have multiple bytes put together it is known as software
or program code. When a microcontroller is said to be
programmed or have code burned into it, it is getting these coded
electrical signals stored into its ROM.

To function or run the code, the microcontroller needs a way to
select each command from ROM one at a time, which is referred to
as running a program. To do this, the microcontroller requires a
clock oscillator, often times this is created with a separate part
called a crystal or resonator connected to the microcontroller to
create a continuous internal pulse train that drives the
microcontroller's central circuitry. This is very similar to the PC
Gigahertz speed clock. Gigahertz is one billion pulses per second.
The speed in a microcontroller is much slower in the megahertz or
million pulses per second. For most applications this is plenty fast
enough.

When the micro is first powered up, the oscillator clock starts
pulsing the same way our heart pulses our blood through our body.
On each pulse of the clock, the micro retrieves a new command
from ROM to execute on the I/O. By arranging these binary codes
properly you can make the I/O pins switch on and off to control
other electrical circuitry connected to the I/O pins. That circuitry
could be a simple relay that turns a light on during the night and
off during the day or it could be more complex and control the
motors of a robot while reading an obstacle sensor. All you need to
do is write the series of binary codes properly, which is the
software. To make it easier to develop this binary code, compilers
were developed. The PICBASIC PRO language compiler is a
BASIC language compiler.

What is a Basic Language Compiler?
You could create software but individually setting or clearing each
bit in memory but most microcontrollers (PIC’s included) offer a
software creation tool called assembly language. Assembly
language uses short little acronyms to represent various simple
operations in the microcontroller and the assembler built into this
software will convert those acronyms into the 1’s and 0’s.
Asssembly language can be considered a very cryptic language to
most people and because of this compilers were created. A
compiler is a PC software application that converts easy to read
and understand words (BASIC commands) into an assembly
language file and then lets the assembler covert the result into the
binary code (1’s and 0’s) the micro needs. Binary code is the
lowest level of software and compiler is considered a high level
language. Once that binary code file is created, then the
microcontroller can be programmed. The binary file will have
the .hex suffix (i.e. program.hex).
The PICBASIC PRO compiler from microEngineering Labs is a
BASIC language compiler for the Microchip 8-bit
microcontrollers.

The PICBASIC PRO compiler is very powerful and the full
version sells for around $250. You can use the full version for
developing complex projects and products. In this book though, we
will use the sample version of the PICBASIC PRO compiler which
is limited to selected PIC microcontrollers and 31 command lines.
This may not sound like a lot of capability but you will soon be
surprised by how much we can accomplish in 31 commands. The
best part is the sample version is free to download so you can try
out their great compiler by recreating the projects in this book.

How does the Microcontroller actually get programmed?
A microcontroller programming tool is a custom designed module
that receives the binary code file created by the compiler and
generates the electrical signals the microcontroller needs to see.

The binary file is downloaded to the program memory or ROM of
the device through specific I/O pins on the microcontroller. There
are many different types of programming tools and are typically
just called a Microchip PIC Programmer.

Figure 1-3 shows the PICkit™2 Starter Kit which is a complete
starter kit for programming Microchip Technology
microcontrollers. The development board included with the PICkit
2 Starter Kit makes it easy to get started programming Microchip
PIC microcontrollers. The development board has a 20 pin socket
and comes with a PIC16F690 microcontroller. The development
board can be powered from the PICkit™2 programmer or
separately. The PICkit™2 gets its power from the PC USB port so
the development power is limited to about 50 milliamps. If you
needed more power then you can power the board separately. For
all the experiments in this book I will let the PICkit 2 or a PICkit 2
clone power the board. The development board has four LEDs, a
momentary switch and a potentiometer wired directly to the 20 pin
socket. This can offer a quick way for a beginner to get started.

Figure 1-3: PICkit™2 Starter Kit

There are also many clone versions of the PICkit 2 programmer
that you can also purchase from various sources. The clone version
shown in Figure 1-4 is a shrunk version of the PICkit 2. It has the
USB connector built into the end and a ribbon cable with the
programming connection wires. This eliminates the need for a
separate USB cable and is very compact. I will use this clone in
most of the experiments in this book and any future project books
that follow.

Figure 1-4: PICkit 2 Clone Programmer

This programmer can plug into the same development board as the
PICkit 2 Starter Kit or any In-Circuit Serial Programming board
which I will cover in a little bit.

In-Circuit Serial Programming

The PICkit™2 has only five or six connections to the development
board for powering the board and for programming the PIC
microcontroller. Two of the connections are power and ground.
Some programmers like the clone PICkit 2 only have 5
connections. For those that have six, the extra pin is for calibrating
the internal oscillator on some PIC’s. This is rarely needed so
many clones leave it off. This leaves three connections that all
programmers have and are specifically for programming the code

into the microcontroller. All of these programmers use these three
pins in a serial method of programming called In-Circuit Serial
Programming (ICSP). Having only a few connections to your
circuit board can be very handy so I wanted to explain how to use
the ICSP feature.

The main advantage to ICSP is the ability to program the PIC in-
circuit. The biggest hang-up you may have with ICSP is the serial
communication signal can get affected by the circuitry connected
to the PIC I/O. For example, the three connections used to program
a PIC in-circuit are: Vpp (MCLR pin), Data (PGD pin) and Clock
(PGC pin). If the Clock or Data signals are not able to send the
correct signal, the PIC will not program properly and you will get a
verify error. If you build your own development board or connect
circuitry to the programming pins of the PIC then you may affect
these signals. There are recommended connection methods from
Microchip so let me explain those.

ICSP Hardware Interface

The schematic in Figure 1-5 shows the ICSP connections and all
the possible connection issues to watch out for in your design.
Because of the way the ICSP feature works, you don’t want to add
any capacitance to the programming connections since this can
delay the signals. Even the capacitance on the Vdd line should be
monitored per the PIC programming specification. The PIC
programmer actually cycles the Vdd line off and on while sending
the Vpp signal to the MCLR pin. This is done to put the PIC in
programming mode. If there is too much capacitance, it may slow
the signal down and not meet the programming specs. You can get
the programming specs for any PIC microcontroller at the
Microchip.com website.

Figure 1-5: PICkit 2 Hardware Interface

You also don’t want to load down the clock or data signal. The
components that are crossed out show what could affect the signal.
The diodes on the Data and Clock lines are a mistake because two-
way communication occurs when programming and verifying the
part. These are pretty easy to see why they should not be included
in your design.

What isn’t quite so clear is the diode between the MCLR reset
circuit and the MCLR/Vpp pin. This is recommended because the
PIC programmer sends a high voltage, low current signal to the
Vpp line of around 12v -13.5v for a short period of time. You don’t
want that signal feeding into your Vdd regulator so the diode helps
protect for that. This is actually just an extra safety precaution
though because the current entering the MCLR pin is extremely
small and the MCLR pull-up resistor will knock it down to prevent
any damage. In most cases you can get by without the diode.

Another recommendation which is often missed is the series
resistors on the PGD and PGC lines between the PIC and the rest
of the circuit. These isolate your circuit from the PGD and PGC

signals so your circuit doesn’t load down the PIC programmer.
This is usually where a problem may occur with ICSP. One
hundred ohm resistors should not affect your circuit function but it
should be plenty of resistance to isolate the programmer.

Another option to get around all this is to add a switch to your
circuit. A four pole switch that allows you to disconnect the PGC,
PGD, Vdd and MCLR pins from the circuit during programming
prevents the rest of the connected circuitry it from loading down
clock and data and disconnects the MCLR resistor from the
programming connection. Figure 1-6 shows the schematic for that
type of arrangement. This is a premium type of setup and most
development board won’t offer this connection arrangement.

What is interesting is the development board included with the
PICkit 2 Starter Kit only includes some of these protections. You
have to make sure you don’t add circuitry to the data and clock
lines that might affect the programming operation. Therefore it is
best to add the 100 ohm resistors to your circuit if you use those
I/O pins in your design.

Figure 1-6: Switched ICSP Connection

ICSP Pin-Out

To be helpful I will give you some of the ICSP pins for the various
PIC microcontroller DIP packages. Table 1 below summarizes it
for you. This should save you the trouble of looking through all
those data sheets.

Table 1: ICSP Connection Pin Numbers

Figure 1-7 shows a simple 40 pin development board I made to test
out ICSP with the PICkit™2 programmer. It’s not pretty but it
worked. I even added a couple LEDs so I could test it with a few
flash LED programs. The 16F887 part used here has an internal
oscillator so I didn’t need to add an external resonator. I prefer to
use a breadboard setup for most of my projects so I can easily
move wires around so I often just use a breadboard module like the
one shown in Figure 1-8.

Figure 1-7: Simple Development Board uses ICSP

ICSP
Connection

40 pin
pin #

28 pin
pin#

20 pin
pin#

18 pin
pin#

14 pin
pin#

8 pin
pin#

Vpp\MCLR 1 1 4 4 4 4

Vdd 11 & 32 20 1 14 1 1

Vss 12 & 31 8 & 19 20 5 14 8

Data 40 28 19 13 13 7

Clock 39 27 18 12 12 6

These small boards with ICSP connectors make it real easy to plug
a PIC microcontroller into a breadboard and still program with the
PICkit™2 or a PICkit 2 clone programmer. I’ll use one of these for
the projects in this book. There isn’t any 100 ohm resistors
included on the board so you may have to add those when you use
a PGD or PGC pin. The projects in this book will use some
resistance when necessary to eliminate the ICSP interference
concern.

<ICSP Breadboard Module>
Figure 1-8: ICSP Breadboard Module

Installing the Software

Now you are ready to get your own programming setup installed
on your computer so you can complete the projects in this book.
The PICBASIC PRO compiler sample version comes with its own
windows editor for actually writing the programs and sending the
binary file to the programmer. The editor is called the MicroCode
Studio. The PICkit™ 2 programmer has a command line option
which allows us to use the PICkit 2 within the MicroCode Studio
editor to one click compile and program the PIC microcontroller
using the ICSP. We have to set all this up on your PC before we
can create the first project. The steps we will take are:

1) Download all the files needed from my website at
www.elproducts.com/picbasicbook_vol1.htm.

2) Install the PICBASIC PRO compiler sample version.
3) Install MicroCode Studio Software (this is part of the

PICBASIC PRO installation).
4) Setup the PICkit 2 interface and command line software

within Microcode Studio.

Installing MicroCode Studio and PICBASIC PRO

Download all the files for this installation on to your computer.
You will need a PC running windows XP or Vista for best
performance. You can get the PICBASIC PRO sample version at:

www.melabs.com/pbpdemo.htm

The full set of project files can be downloaded at my website:

www.elproducts.com/picbasicbook_vol1.htm.

You need to run the PICBASIC PRO installation file so run the
PBPDEMO4.exe file to install the sample version of the
PICBASIC PRO compiler. The compiler will step you through
several screens starting with the one shown in Figure 1-9.

Figure 1-9: PICBASIC PRO Installation

When the PICBASIC PRO installation is complete the last screen
will offer to “Install MicroCode Studio IDE”. Make sure that
option is checked before clicking on the “Finish” button. The
MicroCode Studio will install automatically after you press Finish.
After installation is complete, start Microcode studio and it should
look similar to the picture in Figure 1-10.

Figure 1-10: MicroCode Studio IDE

PICkit2 Setup

First make sure you have the pk2cmd.exe file installed on your
computer. It was part of the package of files you download from
my website www.elproducts.com/picbasicbook_vol1.htm. You can
also download it at www.microchip.com/pickit2.

The steps to set up the PICkit2 in MicroCode Studio are easy once
you know what to do. Click on the “View > Compile and Program
Options” selection as shown in Figure 1-11. The window in Figure
1-12 should appear.

Figure 1-11: Programmer Setup Menu Option

The default programmer is microEngineering Labs own
programmer which is another PIC programmer you can consider. I
prefer to use the PICkit 2 programmer so we need to set that up.

Figure 1-12: Programmer Setup Window

Click on the “Add New Programmer” button to create the PICkit2
setup in MicroCode Studio. Figure 1-13 shows the “Add New
Programmer” window that appears. The “Create a custom
programmer entry” should already be selected so click on the
“Next >” button.

Figure 1-13: Add New Programmer Screen

A second “Add New Programmer” window will appear with a
blank line. Enter the name you want to appear in the programmer
selection window when you select your programmer at compile
time. I chose to call it simply “PICkit2” as you can see in 1-14.

Figure 1-14: Enter PICkit2 in Window

After you enter the programmer name, click the “Next >” button
and the “Editing PICkit2” window will ask for the PICkit2
command line executable. If you chose a different name the
window title will show the name you selected. The command line
executable for the PICkit2 is the pk2cmd.exe file. Enter this into
the Programmer Filename: window as seen in Figure 1-15.

Figure 1-15: Enter PICkit2 Command Line

You don’t have to know where the file is for the next step but when
you click on the “Next >” button the screen in Figure 1-16 will pop
up asking for the file location. You have a choice in how you want
to find the “pk2cmd.exe” executable file. You can have MicroCode
Studio search for the command line automatically or you can
manually select it yourself if you remember where you put it on
your computer. The manual option is a lot faster.

Figure 1-16: Find the PICkit2 Command line

The next step I’m going to describe is the most critical and the
most difficult because these are the command line options that will
transfer the PIC MCU you are using and the binary .hex file the

compiler creates to the PICkit2 prior to starting the PICkit2
command line executable. The command line options include both
PICkit2 format and MicroCode Studio format options combined.
Enter the command line exactly as you see it here with spacing and
capitalization. If you are an advanced PC user then you may
modify the command line from what I show below depending on
how you want to use the PICkit2. The “Readme for PK2CMD.txt”
file that downloaded with the “pk2cmd.exe” file explains all the
PICkit2 command line options. I highly suggest you read that over
before changing from what I show below.

/PPIC$target-device$ /F$long-hex-filename$ /M /R /T /H3

Figure 1-17 shows the command line entered in the MicroCode
Studio screen. Let me explain my choices for those that want to
understand how it works.

Figure 1-17: Command Line Option Window

The /P option selects the PIC MCU but I wanted MicroCode
Studio to pass that on from its own selection window. MicroCode
Studio offers that detail as a parameter “$target-device$” but it
doesn’t include the PIC in front of the number (i.e. 16F690 instead
of PIC16F690) so you have to type that in. This gives us the
“/PPIC$target-device$” section of the command line option.

I’m using the PICBASIC PRO compiler and the /F option selects
the .hex file the compiler created. MicroCode Studio offers the
path to the compiled and assembled .hex file through a parameter
called “$long-hex-filename$”. This part of the command line thus
becomes “/F$long-hex-filename$”.
The rest of the command line options are where you may modify
the setup that I have. I first added the /M option which directs the
PICkit2 to erase and then program all the memory locations
including program memory, the configuration, the EEPROM and
the ID memory.

The /R directs the PICkit 2 to release the MLCR line or reset line
after programming. This prevents the programmer from holding
the development board in reset mode.

The /T option tells the PICkit 2 to power the development board
from the USB port. Remember you only have 50 milliamps to use
with this.

/H3 is the final option I chose. When the programmer command
line starts operating, a pop up window will appear and show the
programming operation running. I like to keep that window open
for a few seconds after the programming is complete. The /H3
keeps it open for three seconds. Figure 1-18 shows a typical pop up
window.

Figure 1-18: pk2cmd.exe Programming Screen

Special Note:
If you try to program your first part and the programming
screen pops up quickly and then disappears, then you probably
have a mistake in your command line or the pk2cmd.exe
cannot find the PICkit 2 programmer. This could be a problem
with the USB port so make sure you have everything connected
properly.

After you setup the PICkit 2 programmer you also need to verify
PICBASIC PRO can be found by the MicroCode Studio. Click on
the “View > Compile and Program Options” as shown in Figure 1-
11 again but this time click on the compiler tab. The path to where
PICBASIC PRO is stored on your computer should show up as
seen in Figure 1-19. Verify this is correct for your setup otherwise
MicroCode Studio will give you an error. This should be
automatically set up correctly by the installation but it’s best to
check.

Figure 1-19: PICBASIC PRO Setup

That’s it. Follow these steps and you should have your PICkit2
running within MicroCode Studio with the PICBASIC PRO
compiler and have a one click, compile and program solution.

Configuration Settings
There is one final step you need to understand before we can create
our first program. Outside the structure of your program, the PIC
has certain bits that are set at program time to control the special
internal settings of the microcontroller. These settings control the
internal watchdog timer, power-up timer, and oscillator selection
and a few more.

All of the options for the part can be seen in the PIC data sheet
under the CONFIG register section. The PICBASIC PRO compiler
puts those configuration settings in a separate file that it calls at
compile time. The settings file will be in an .inc file that has the
name of the MCU you are using. The projects in this book will use
the PIC12F683 eight pin microcontroller. In this case, the
configuration file is named 12F683.inc. You will find it in the

PBPDEMO directory, where you installed the PICBASIC PRO
compiler. The file will contain two separate configuration lines.

device pic12F683, intrc_osc_noclkout, wdt_on, mclr_on, protect_off

and

__config _INTRC_OSC_NOCLKOUT & _WDT_ON & _MCLRE_ON & _CP_OFF

This line in the file is where the PICBASIC PRO compiler gets the
information on how to set the configuration bits inside the .hex
file. In this example, the internal RC oscillator is used as the
system clock. This is the setting we will use in the book projects.
You can open the 12F683.inc file with notepad and modify it if
necessary.

If you needed to use the MCLR pin as a digital I/O pin then you
would change the mclr_on to mclr_off and MCLRE_ON to
MCLRE_OFF. You can then save the file for any future builds.

For the projects in this book you shouldn’t need to change the
default settings but if you want to change them in the future you
now know where to look.

Chapter 2 – Flash an LED

Now we can write our first program to test this out. This first
program will simply flash an LED connected to the GP0 pin of the
12F683 eight pin microcontroller. This is a simple project but
proves out the whole process of writing software, programming the
microcontroller and watching the application run.

Figure 2-1 shows the completed project built into a breadboard.
The PICkit 2 clone programmer powers the board and the RED
LED will flash at a rate of ½ second on and ½ second off.

Figure 2-1: Final Flash LED Project

How to Program:
1) Enter the program into the editor window
2) Make sure Target Processor window in MCStudio shows
“12F683”
3) Connect the PICkit 2 clone programmer to the development
board with the PIC12F683 in its socket.

4) Click on the little arrow next to the compile/program button
(it’s next to the target processor window from step 1) and make
sure “PICkit2” is selected.
5) Click on the compile/program button.

This should compile your program and bring up the PICkit 2
command line pop-up window. You should see it program and then
complete the process. The pop-up window should close after the
three second delay. The RED LED should be blinking on the
development board. If you don’t get this working, go back through
the steps and see if you missed something. Getting a simple LED
to flash is a great

Hardware

The hardware is built on a breadboard that has letters lined up with
the column of connections and numbers for the rows. The
connections can be reproduced based on the table of connections
below. Figure 2-2 also shows the schematic for this project.

Connection Table
Micro - Pin 1 at C6
Vdd Jumper - a6 to +rail
Vss Jumper - j6 to -rail
Green Jumper- j7 to j12
330 ohm - i12 to i18
Red LED - Anode j18, Cathode -rail

Figure 2-2: Flash LED Schematic

Software

The software is quite simple because it uses some of the
commands that make PICBASIC PRO easier to use that many
other compilers. The first steps though require the I/O to be setup
as digital. When the PIC12F683 is first powered up, the I/O
defaults to analog mode. The I/O pins share a connection to both
analog and digital features. The ANSEL = 0 sets all the I/O pins to
digital mode.

ANSEL = 0 ' Set I/O to digital

The 12F683 also has an internal comparator which can be shut
down with the CMCON0 = 7 line.

CMCON0 = 7 ' Comparator off

The main program loop begins with the label main followed by a
semi colon. We will use this a marker in a future GOTO command.

main:

The I/O pins on the 12F683 are referred to as General Purpose
Input Output pins or GPIO. The internal register that controls these
pins individually is also called the GPIO register. These can be
controlled by writing to the GPIO register directly but we would
also need to setup the TRISIO register inside the 12F683. The
TRISIO determines if the pins are a digital input pin or a digital
output pin. Both of these are automatically controlled with the
HIGH or LOW command.

The GPIO.0 is the nickname for the GP0 pin. The software uses
the HIGH command to place a high signal on that pin. This will
light the LED. PICBASIC PRO doesn’t care if you use capitals or
small case letters. The MCStudio should recognize the command
an automatically capitalize the command.

HIGH GPIO.0 'LED on

The next command is the PAUSE command. This command just
creates a ½ second delay as the value 500 represents 500
milliseconds or ½ second.

PAUSE 500 'Delay 1/2 second

The program then turns the LED off by setting the same pin low.

LOW GPIO.0 'LED off

The same pause command line delays another ½ second.

PAUSE 500 'Delay 1/2 second

The program then uses the GOTO command to jump back to the
main label and repeat the operation over again.

GOTO main 'Loop back and do it again

The complete program is shown below for you to type into the
MCStudio window or you can load it from the files download.

Software Listing
'**
'* Name : Blink.BAS
'* Author : Chuck Hellebuyck
'* Notice : Copyright (c) 2009 Electronic Products
'* : All Rights Reserved
'* Date : 8/20/2009
'* Version : 1.0
'* Notes :
'* : CHIPAXE-8 Pin 1 at C6
'* : Vdd Jumper - a6 to +rail
'* : Vss Jumper - j6 to -rail
'* : Green Jumper - j7 to j12
'* : 330 ohm - i12 to i18
'* : Red LED - Anode j18, Cathode -rail
'**

 ANSEL = 0 ' Set I/O to digital
 CMCON0 = 7 ' Comparator off

 main:
 HIGH GPIO.0 'LED on
 PAUSE 500 'Delay 1/2 second
 LOW GPIO.0 'LED off
 PAUSE 500 'Delay 1/2 second
 GOTO main 'Loop back and do it again

Next Steps

Simple next steps are to change the pause value to a lower number
to flash the LED faster. You could also connect the LED to a

different pin and then change the number in the high and low
command lines to make that new connection pin flash the LED.

